Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
EBioMedicine ; 103: 105125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640834

RESUMO

We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.


Assuntos
Terapia Genética , Humanos , Terapia Genética/métodos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Cardiopatias/terapia , Cardiopatias/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Edição de Genes , Cardiologia/métodos , Transplante de Células-Tronco/métodos
2.
PLoS One ; 19(3): e0300918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512827

RESUMO

Sarcopenia, a clinical syndrome primarily associated with reduced muscle mass in the elderly, has a negative impact on quality of life and survival. It can occur secondarily to other diseases such as heart failure (HF), a complex clinical syndrome with high morbidity and mortality. The simultaneous occurrence of these two conditions can worsen the prognosis of their carriers, especially in the most severe cases of HF, as in patients with reduced left ventricular ejection fraction (LVEF). However, due to the heterogeneous diagnostic criteria for sarcopenia, estimates of its prevalence present a wide variation, leading to new criteria having been recently proposed for its diagnosis, emphasizing muscle strength and function rather than skeletal muscle mass. The primary objective of this study is to evaluate the prevalence of sarcopenia and/or dynapenia in individuals with HF with reduced LVEF according to the most recent criteria, and compare the gene and protein expression of those patients with and without sarcopenia. The secondary objectives are to evaluate the association of sarcopenia and/or dynapenia with the risk of clinical events and death, quality of life, cardiorespiratory capacity, ventilatory efficiency, and respiratory muscle strength. The participants will answer questionnaires to evaluate sarcopenia and quality of life, and will undergo the following tests: handgrip strength, gait speed, dual-energy X-ray absorptiometry, respiratory muscle strength, cardiopulmonary exercise, as well as genomic and proteomic analysis, and dosage of N-terminal pro-B-type natriuretic peptide and growth differentiation factor-15. An association between sarcopenia and/or dynapenia with unfavorable clinical evolution is expected to be found, in addition to reduced quality of life, cardiorespiratory capacity, ventilatory efficiency, and respiratory muscle strength.


Assuntos
Insuficiência Cardíaca , Sarcopenia , Humanos , Idoso , Sarcopenia/complicações , Sarcopenia/epidemiologia , Sarcopenia/diagnóstico , Volume Sistólico , Força da Mão/fisiologia , Prevalência , Qualidade de Vida , Proteômica , Função Ventricular Esquerda , Força Muscular/fisiologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/epidemiologia , Músculo Esquelético , Estudos Observacionais como Assunto
3.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397069

RESUMO

Induced pluripotent stem cells (iPSCs) are derived from reprogrammed adult somatic cells. These adult cells are manipulated in vitro to express genes and factors essential for acquiring and maintaining embryonic stem cell (ESC) properties. This technology is widely applied in many fields, and much attention has been given to developing iPSC-based disease models to validate drug discovery platforms and study the pathophysiological molecular processes underlying disease onset. Especially in neurological diseases, there is a great need for iPSC-based technological research, as these cells can be obtained from each patient and carry the individual's bulk of genetic mutations and unique properties. Moreover, iPSCs can differentiate into multiple cell types. These are essential characteristics, since the study of neurological diseases is affected by the limited access to injury sites, the need for in vitro models composed of various cell types, the complexity of reproducing the brain's anatomy, the challenges of postmortem cell culture, and ethical issues. Neurodegenerative diseases strongly impact global health due to their high incidence, symptom severity, and lack of effective therapies. Recently, analyses using disease specific, iPSC-based models confirmed the efficacy of these models for testing multiple drugs. This review summarizes the advances in iPSC technology used in disease modelling and drug testing, with a primary focus on neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Células-Tronco Pluripotentes , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Descoberta de Drogas
4.
Adv Exp Med Biol ; 1418: 33-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603271

RESUMO

Global population aging is a major challenge to health and socioeconomic policies. The prevalence of diseases progressively increases with aging, with cardiovascular disease being the major cause of mortality among elderly people. The allostatic overload imposed by the accumulation of cardiac senescent cells has been suggested to play a pivotal role in the aging-related deterioration of cardiovascular function. Senescent cells exhibit intrinsic disorders and release a senescence-associated secretory phenotype (SASP). Most of these SASP compounds and damaged molecules are released from senescent cells by extracellular vesicles (EVs). Once secreted, these EVs can be readily incorporated by recipient neighboring cells and elicit cellular damage or otherwise can promote extracellular matrix remodeling. This has been associated with the development of cardiac dysfunction, fibrosis, and vascular calcification, among others. The molecular signature of these EVs is highly variable and might provide important information for the development of aging-related biomarkers. Conversely, EVs released by the stem and progenitor cells can exert a rejuvenating effect, raising the possibility of future anti-aging therapies.


Assuntos
Alostase , Vesículas Extracelulares , Coração , Transporte Biológico
5.
Sci Rep ; 13(1): 8689, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248416

RESUMO

The antidiabetic agent class of sodium-glucose cotransporter 2 (SGLT2) inhibitors confer unprecedented cardiovascular benefits beyond glycemic control, including reducing the risk of fatal ventricular arrhythmias. However, the impact of SGLT2 inhibitors on the electrophysiological properties of cardiomyocytes exposed to stimuli other than hyperglycemia remains elusive. This investigation tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) affects cardiomyocyte electrical activity under hypoxic conditions. Rat neonatal and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes incubated or not with the hypoxia-mimetic agent CoCl2 were treated with EMPA (1 µM) or vehicle for 24 h. Action potential records obtained using intracellular microelectrodes demonstrated that EMPA reduced the action potential duration at 30%, 50%, and 90% repolarization and arrhythmogenic events in rat and human cardiomyocytes under normoxia and hypoxia. Analysis of Ca2+ transients using Fura-2-AM and contractility kinetics showed that EMPA increased Ca2+ transient amplitude and decreased the half-time to recover Ca2+ transients and relaxation time in rat neonatal cardiomyocytes. We also observed that the combination of EMPA with the Na+/H+ exchanger isoform 1 (NHE1) inhibitor cariporide (10 µM) exerted a more pronounced effect on Ca2+ transients and contractility than either EMPA or cariporide alone. Besides, EMPA, but not cariporide, increased phospholamban phosphorylation at serine 16. Collectively, our data reveal that EMPA reduces arrhythmogenic events, decreases the action potential duration in rat neonatal and human cardiomyocytes under normoxic or hypoxic conditions, and improves cytosolic calcium handling at least partially independent of NHE1. Moreover, we provided further evidence that SGLT2 inhibitor-mediated cardioprotection may be partly attributed to its cardiomyocyte electrophysiological effects.


Assuntos
Compostos Benzidrílicos , Cálcio , Células-Tronco Pluripotentes Induzidas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Ratos , Arritmias Cardíacas , Compostos Benzidrílicos/farmacologia , Cálcio/metabolismo , Miócitos Cardíacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
Front Physiol ; 13: 1007418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505085

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder that causes accelerated aging and a high risk of cardiovascular complications. However, the underlying mechanisms of cardiac complications of this syndrome are not fully understood. This study modeled HGPS using cardiomyocytes (CM) derived from induced pluripotent stem cells (iPSC) derived from a patient with HGPS and characterized the biophysical, morphological, and molecular changes found in these CM compared to CM derived from a healthy donor. Electrophysiological recordings suggest that the HGPS-CM was functional and had normal electrophysiological properties. Electron tomography showed nuclear morphology alteration, and the 3D reconstruction of electron tomography images suggests structural abnormalities in HGPS-CM mitochondria, however, there was no difference in mitochondrial content as measured by Mitotracker. Immunofluorescence indicates nuclear morphological alteration and confirms the presence of Troponin T. Telomere length was measured using qRT-PCR, and no difference was found in the CM from HGPS when compared to the control. Proteomic analysis was carried out in a high-resolution system using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The proteomics data show distinct group separations and protein expression differences between HGPS and control-CM, highlighting changes in ribosomal, TCA cycle, and amino acid biosynthesis, among other modifications. Our findings show that iPSC-derived cardiomyocytes from a Progeria Syndrome patient have significant changes in mitochondrial morphology and protein expression, implying novel mechanisms underlying premature cardiac aging.

7.
Cell Mol Life Sci ; 79(11): 568, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287277

RESUMO

Anthracyclines are chemotherapeutic drugs widely used in the frontline of cancer treatment. The therapeutic mechanisms involve the stabilization of topoisomerase IIα, DNA, and the anthracycline molecule in a ternary complex that is recognized as DNA damage. Redox imbalance is another vital source of oxidative DNA damage. Together, these mechanisms lead to cytotoxic effects in neoplastic cells. However, anthracycline treatment can elicit cardiotoxicity and heart failure despite the therapeutic benefits. Topoisomerase IIß and oxidative damage in cardiac cells have been the most reported pathophysiological mechanisms. Alternatively, cardiac cells can undergo stress-induced senescence when exposed to anthracyclines, a state primarily characterized by cell cycle arrest, organelle dysfunction, and a shift to senescence-associated secretory phenotype (SASP). The SASP can propagate senescence to neighboring cells in an ongoing process that leads to the accumulation of senescent cells, promoting cellular dysfunction and extracellular matrix remodeling. Therefore, the accumulation of senescent cardiac cells is an emerging pathophysiological mechanism associated with anthracycline-induced cardiotoxicity. This paradigm also raises the potential for therapeutic approaches to clear senescent cells in treating anthracycline-induced cardiotoxicity (i,e, senolytic therapies).


Assuntos
Antraciclinas , Cardiotoxicidade , Humanos , Antraciclinas/farmacologia , Senoterapia , Antibióticos Antineoplásicos , Senescência Celular
8.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328327

RESUMO

Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•-) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•- formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•- formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•- formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•- formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Traumatismo por Reperfusão , Injúria Renal Aguda/metabolismo , Tecido Adiposo/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/metabolismo , Superóxidos/metabolismo
9.
Front Physiol ; 13: 1077069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589430

RESUMO

Human pluripotent stem cells (PSC) have been used for disease modelling, after differentiation into the desired cell type. Electrophysiologic properties of cardiomyocytes derived from pluripotent stem cells are extensively used to model cardiac arrhythmias, in cardiomyopathies and channelopathies. This requires strict control of the multiple variables that can influence the electrical properties of these cells. In this article, we report the action potential variability of 780 cardiomyocytes derived from pluripotent stem cells obtained from six healthy donors. We analyze the overall distribution of action potential (AP) data, the distribution of action potential data per cell line, per differentiation protocol and batch. This analysis indicates that even using the same cell line and differentiation protocol, the differentiation batch still affects the results. This variability has important implications in modeling arrhythmias and imputing pathogenicity to variants encountered in patients with arrhythmic diseases. We conclude that even when using isogenic cell lines to ascertain pathogenicity to variants associated to arrythmias one should use cardiomyocytes derived from pluripotent stem cells using the same differentiation protocol and batch and pace the cells or use only cells that have very similar spontaneous beat rates. Otherwise, one may find phenotypic variability that is not attributable to pathogenic variants.

10.
Front Pharmacol ; 12: 725084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867327

RESUMO

Radiation-induced liver disease (RILD) remains a major problem resulting from radiotherapy. In this scenario, immunotherapy with granulocyte colony-stimulating factor (G-CSF) arises as an attractive approach that might improve the injured liver. Here, we investigated G-CSF administration's impact before and after liver irradiation exposure using an association of alcohol consumption and local irradiation to induce liver disease model in C57BL/6 mice. Male and female mice were submitted to a previous alcohol-induced liver injury protocol with water containing 5% alcohol for 90 days. Then, the animals were treated with G-CSF (100 µg/kg/d) for 3 days before or after liver irradiation (18 Gy). At days 7, 30, and 60 post-radiation, non-invasive liver images were acquired by ultrasonography, magnetic resonance, and computed tomography. Biochemical and histological evaluations were performed to verify whether G-CSF could prevent liver tissue damage or reverse the acute liver injury. Our data showed that the treatment with G-CSF before irradiation effectively improved morphofunctional parameters caused by RILD, restoring histological arrangement, promoting liver regeneration, preserving normal organelles distribution, and glycogen granules. The amount of OV-6 and F4/80-positive cells increased, and α-SMA positive cells' presence was normalized. Additionally, prior G-CSF administration preserved serum biochemical parameters and increased the survival rates (100%). On the other hand, after irradiation, the treatment showed a slight improvement in survival rates (79%) and did not ameliorate RILD. Overall, our data suggest that G-CSF administration before radiation might be an immunotherapeutic alternative to radiotherapy planning to avoid RILD.

11.
World J Stem Cells ; 13(9): 1231-1247, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34630860

RESUMO

Cardiovascular diseases represent the world's leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.

12.
Genet Mol Biol ; 44(3): e20200147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34496008

RESUMO

Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton's jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton's jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.

13.
Front Pharmacol ; 12: 641116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912054

RESUMO

Heart failure has reached epidemic proportions with the advances in cardiovascular therapies for ischemic heart diseases and the progressive aging of the world population. Efficient pharmacological therapies are available for treating heart failure, but unfortunately, even with optimized therapy, prognosis is often poor. Their last therapeutic option is, therefore, a heart transplantation with limited organ supply and complications related to immunosuppression. In this setting, cell therapies have emerged as an alternative. Many clinical trials have now been performed using different cell types and injection routes. In this perspective, we will analyze the results of such trials and discuss future perspectives for cell therapies as an efficacious treatment of heart failure.

14.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334068

RESUMO

Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC's intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC's tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Movimento Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Animais , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica
16.
Cells ; 9(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645832

RESUMO

Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.


Assuntos
Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Miócitos Cardíacos/fisiologia , Animais , Cardiomiopatias/diagnóstico por imagem , Doença de Chagas/diagnóstico por imagem , Doença de Chagas/metabolismo , Doença de Chagas/terapia , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo
17.
Tissue Eng Part A ; 26(13-14): 769-779, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32493133

RESUMO

There is a constant need for improving embryo culture conditions in assisted reproduction. One possibility is to use mesenchymal stem/stromal cells derived from menstrual blood (mbMSCs), with an endometrial origin. In this study, we sought to analyze the expansion of mouse embryos in a direct coculture model with mbMSCs. Our results showed that after five passages, mbMSCs presented a spindle-shaped morphology, with surface markers that were comparable with the normal mesenchymal cell phenotype. mbMSCs could differentiate into adipogenic and osteogenic lineages and secrete angiopoetin-2 and hepatocyte growth factor. The coculture experiments employed 103 two-cell-stage embryos that were randomly divided into two groups: control (n = 50), embryos cultured in GV-Blast medium, and cocultured mbMSCs (n = 53), embryos cocultured with GV-Blast and mbMSCs. Typically, two to three embryos were placed in a well with 200 µL of culture medium and observed until developmental day 5. After 5 days, the cocultured group had more embryos in the blastocyst stage (69.8%) when compared with the control group (30%) (p < 0.001). It was also found that nearly 57% of blastocysts in the cocultured group reached the hatching stage, while only 13% achieved this stage in the control group (p < 0.001). Analyses of cultured mbMSCs and growth media, in the presence or absence of an embryo, were also performed. Immunofluorescence detected similar levels of collagen I and III and fibronectin in both mbMSCs and cocultured mbMSCs, and similar amounts of growth factors, VEGF, PDGF-AA, and PDGF-BB, were also observed in the conditioned medium, regardless of embryo presence. The present study describes, for the first time, an easy, noninvasive, and autologous method that could potentially increase blastocyst growth rates during assisted reproductive procedures (i.e., in vitro fertilization). It is proposed that this mbMSC coculture strategy enriches the embryonic microenvironment and promotes embryo development. This technique may complement or replace existing assisted reproduction methods and is directly relevant to the field of personalized medicine. Impact statement The study demonstrates a novel and potentially personalized assisted reproduction approach. The search for alternative and autologous methods provides assisted reproduction patients with a better chance of a successful pregnancy. In this study, mesenchymal cells derived from menstrual blood resembled the outside uterine surface and could potentially be employed for improving embryo outgrowth. Our protocol enriches the embryonic microenvironment and facilitates high-quality single-embryo transfer.


Assuntos
Desenvolvimento Embrionário/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Angiopoietina-2/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Endométrio/citologia , Endométrio/metabolismo , Feminino , Fibronectinas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos
18.
Cells ; 9(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079274

RESUMO

Induced pluripotent stem cells (iPSC) have been the focus of several studies due to their wide range of application, including in cellular therapy. The use of iPSC in regenerative medicine is limited by their tumorigenic potential. Extracellular vesicles (EV) derived from stem cells have been shown to support renal recovery after injury. However, no investigation has explored the potential of iPSC-EV in the treatment of kidney diseases. To evaluate this potential, we submitted renal tubule cells to hypoxia-reoxygenation injury, and we analyzed cell death rate and changes in functional mitochondria mass. An in vivo model of ischemia-reperfusion injury was used to evaluate morphological and functional alterations. Gene array profile was applied to investigate the mechanism involved in iPSC-EV effects. In addition, EV derived from adipose mesenchymal cells (ASC-EV) were also used to compare the potential of iPSC-EV in support of tissue recovery. The results showed that iPSC-EV were capable of reducing cell death and inflammatory response with similar efficacy than ASC-EV. Moreover, iPSC-EV protected functional mitochondria and regulated several genes associated with oxidative stress. Taken together, these results show that iPSC can be an alternative source of EV in the treatment of different aspects of kidney disease.


Assuntos
Injúria Renal Aguda/fisiopatologia , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Humanos , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio
19.
Sci Rep ; 9(1): 18077, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792288

RESUMO

The stem cell niche has a strong influence in the differentiation potential of human pluripotent stem cells with integrins playing a major role in communicating cells with the extracellular environment. However, it is not well understood how interactions between integrins and the extracellular matrix are involved in cardiac stem cell differentiation. To evaluate this, we performed a profile of integrins expression in two stages of cardiac differentiation: mesodermal progenitors and cardiomyocytes. We found an active regulation of the expression of different integrins during cardiac differentiation. In particular, integrin α5 subunit showed an increased expression in mesodermal progenitors, and a significant downregulation in cardiomyocytes. To analyze the effect of α5 subunit, we modified its expression by using a CRISPRi technique. After its downregulation, a significant impairment in the process of epithelial-to-mesenchymal transition was seen. Early mesoderm development was significantly affected due to a downregulation of key genes such as T Brachyury and TBX6. Furthermore, we observed that repression of integrin α5 during early stages led to a reduction in cardiomyocyte differentiation and impaired contractility. In summary, our results showed the link between changes in cell identity with the regulation of integrin α5 expression through the alteration of early stages of mesoderm commitment.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Integrina alfa5/genética , Miócitos Cardíacos/citologia , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Nicho de Células-Tronco
20.
Sci Rep ; 9(1): 19203, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844156

RESUMO

Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.


Assuntos
Canal de Potássio ERG1/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Mutação/genética , Miócitos Cardíacos/fisiologia , Transporte Proteico/genética , Potenciais de Ação/genética , Adolescente , Adulto , Membrana Celular/genética , Feminino , Edição de Genes/métodos , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...